Computer Chinese Chess

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

Abstract

- An introduction to problems and opportunities in Computer Chinese Chess.
 - Open game
 - Middle game
 - End game
- How to generate endgame databases efficiently?
 - Exhaustive enumeration.
 - Memory addressing space.
 - Speed.
- How to use endgame databases during searching?

Introduction

Western chess programs.

- One of the important areas since the dawn of computing research.
- Pioneer paper by C.E. Shannon (1950).
- Beat the human champion at 1997.
- Many techniques can be used in computer Chinese chess programs.
- Computer Chinese chess programs.
 - About 7-dan.
 - Computing research history: more than 30 years late.
 - ▷ Started at about 1981.

Chess Related Researches

Chess related research:

- Open game.
 - ▷ Many pseudo theories.
 - ▶ Heuristics.
- Middle game searching.
 - ▷ Traditional game tree searching.
- Endgame.
 - ▷ Databases.
 - ▷ More heuristics.

Books about Chinese Chess

First written book: South Sung (about 1127–1279 AD)

Properties of Chinese Chess

Several unique characteristics about Chinese chess.

- The usage of Cannon.
- Categories of defending and attacking pieces.
- The positions of Pawns.
- Complex Chinese chess rules.
- Palace and the protection of kings.
- Material combinations:
 - Although Knight is roughly equal to Cannon, Rook + Knight + Cannon is better than Rook + 2 Cannons.
 - ▶ Knowledge inferencing among material combinations [Chen et al. 2007].

Research Opportunities

Some research opportunities.

- Open game theories.
 - ▶ Learning form a vast amount of prior human knowledge [Chen et al. 2006].
- Much larger searching space:
 - \triangleright Western chess: 10^{123}
 - \triangleright Chinese chess: 10^{150}
 - ▶ Deeper searching depth and longer game.
- Game tree searching.
 - ▶ The usage of materials.
 - ▷ Knowledge inferencing among material combinations [Chen et al. 2007].
- Endgame: contains lots of pieces.
- Rules.

Endgame Databases

Chinese chess endgame database:

• Indexed by a sublist of pieces S, including both Kings.

K	Ú G	M	R	∣ N	Č	P
King	Guard	Minister	Rook	Knight	Cannon	Pawn
611 (15)	🔁 🛨	村 ⑧	(!)	(5)	<u>ø</u>	چ ج

- KCPGGMMKGGMM (¹/₂ ¹/₅ ¹/₆ ¹/₆ ¹/₆ ¹/₇ ¹/₇ ¹/₇ ¹/₈ ²/₈ ³/₈): the database consisting of RED Cannon and Pawn, and Guards and Ministers from both sides.
- A position in a database S: A legal arrangement of pieces in S on the board and an indication of who the next player is.
- Perfect information of a position:
 - ▶ What is the best possible outcome, i.e. win/loss/draw, that the player can achieve starting from this position?
 - ▶ What is a strategy to achieve the best possible outcome?
- Given S, to be able to give the perfect information of all *legal positions* formed by placing pieces in S on the board.
- Partial information of a position:
 - ▷ win/loss/draw; DTC; DTZ; DTR.

Usage of Endgame Databases

- Improve the "skill" of Chinese chess computer programs.
 - KNPKGGMM (🍊 😔 vs. 🕀 🕀 🛞)
- Educational:
 - Teach people to master endgames.
- Recreational.

An Endgame Book

Definitions

• State graph for an endgame *H*:

- Vertex: each legal placement of pieces in H and the indication of who the current player (Red/Black) is.
 - ▶ Each vertex is called a position.
 - ▷ May want to remove symmetry positions.
- Edge: directed, from a position x to a position y if x can reach y in one ply.
- Characteristics:
 - ▶ Bipartite.
 - ▶ Huge number of vertices and edges for non-trivial endgames.
 - ▶ Example: KCPGGMMKGGMM has $1.5 * 10^{10}$ positions and about $3.2 * 10^{11}$ edges.

Overview of Algorithms

Forward searching: doesn't work for non-trivial endgames.

AND-OR game tree search.

. . .

- Need to search to the terminal positions to reach a conclusion.
- Runs in exponential time not to mention the amount of main memory.
- Heuristics: A^{*}, transposition table, move ordering, iterative deepening

Retrograde Analysis (1/2)

- First systematic studies by Ken Thompson 1986 for Western chess.
- Algorithm:
 - List all positions.
 - Find all positions that are initially "stable", i.e., solved.
 - Propagate the values of stable positions backward to the positions that can reach the stable positions in one ply.
 - ▶ Watch out the and-or rules.
 - Repeat this process until no more changes is found.

Retrograde Analysis (2/2)

Critical issues: time and space trade off.

- Information stored in each vertex can be compressed.
- Store only vertices, generate the edges on demand.
- Try not to propagate the same information.

Stable Positions

Another critical issue: how to find stable positions?

- Checkmate, stalemate, King facing King.
- It maybe the case the best move is to capture an opponent's piece and then win.
 - \triangleright so called "distance-to-capture" (DTC);
 - \triangleright the traditional metric is "distance-to-mate" (DTM).
- Need to access values of positions in other endgames.
 For example,
 - KCPKGGMM needs to access
 - ▶ KCKGGMM
 - ▶ KPKGGMM
 - ▶ KCPKGMM, KCPKGGM
 - A lattice structure for endgame accesses.
 - Need to access lots of huge databases at the same time.
- [Hsu & Liu, 2002] uses a simple graph partitioning scheme to solve this problem with good practical results.

An Example of the Lattice Structure

Cycles in the State Graph (1/2)

• Yet another critical issue: cycles in the state graph.

- Can never be stable.
- In terms of graph theory,
 - ▶ a stable position is a pendant in the current state graph;
 - ▶ a propagated position is removed from the sate graph;
 - \triangleright no vertex in a cycle can be a pendant.

Cycles in the State Graph (2/2)

• For most games, a cyclic sequence of moves means draw.

- Positions in cycles are stable.
- Only need to propagate positions in cycles once.
- For Chinese chess, a cyclic sequence of moves can mean win/loss/draw.
 - Special cases: only one side has attacking pieces.
 - ▶ Threaten the opponent and fall into a repeated sequence is illegal.
 - ▶ You can threaten the opponent only if you have attacking pieces.
 - ▶ The stronger side does not need to threaten an opponent without attacking pieces.
 - ▶ All positions in cycles are draws.
 - General cases: very complicated.

Previous Results — Retrograde Analysis

• Western chess: general approach.

- Complete 3- to 5-piece, pawn-less 6-piece endgames are built.
- Selected 6-piece endgames, e.g., KQQKQP.
 - \triangleright Roughly 7.75 * 10⁹ positions per endgame.
 - ▷ Perfect information.
 - \triangleright 1.5 3 *10¹² bytes for all 3- to 6-piece endgames.

• Awari: machine and game dependent approach.

- Solved in the year 2002.
- $2.04 * 10^{11}$ positions in an endgame.
 - \triangleright Using parallel machines.
 - ▶ Win/loss/draw.

Checkers: game dependent approach.

- $1.7 * 10^{11}$ positions in an endgame.
 - Currently the largest endgame database of any games using a sequential machine.
 - ▷ Win/loss/draw.

Many other games.

Results — Chinese Chess

- Earlier work by Prof. S. C. Hsu (許舜欽) and his students, and some other researchers in Taiwan.
 - KRKGGMM (49 vs. 🖅 🖅 🗐 🛞) [Fang 1997; master thesis]

▷ About $4 * 10^6$ positions; Perfect information.

- Memory-efficient implementation: general approach.
 - KCPGMKGGMM (🧐 🥌 🔠 🕬 vs. 🔁 🕏 🛞) [Wu & Beal 2001]

▷ About $2 * 10^9$ positions; Perfect information.

- KCPGGMMKGGMM (總 感 健 健 想 物 vs. 世 登 ⑧ ⑨) [Wu, Liu & Hsu 2004]
 - ▷ About 8.8 * 10⁹ positions; 2.6 * 10⁻⁵ seconds per position; Perfect information.
 - ▶ The largest single endgame database and the largest collection reported.
- Verification [Hsu & Liu 2002]
- Special rules: more likely to be affected when endgames get larger.

Chinese Chess Special Rules (1/3)

• A player cannot avoid the losing of the game or important pieces by forcing the opponent to do repeated counter-moves.

• Checking the opponent's king repetitively with no hope of checkmate.

 \triangleright Asia rule example #2.

- Chasing an unprotected opponent's piece repetitively with no hope of capturing it.
 - ▷ Asia rule example #19.
- Threatening (to checkmate) repetitively with no hope of realizing the threat.

 \triangleright Asia rule example #31.

- Sometimes it is difficult to check whether a piece is truly or falsely protected.
 - Asia rule example #39.
 - Asia rule example #105.
- Not a problem for Western chess.
 - Cycles mean draw.

- Checking the opponent's king repetitively with no hope of checkmate.
 - \triangleright R4=5,K5=6,R5=4,K6=5,...
 - ▷ Red Rook checks Black King.

- Chasing an unprotected opponent's piece repetitively with no hope of capturing it.
 - \triangleright C2-1,R4-2,C2+2,R4+2,...
 - ▶ Red Cannon at the 2nd column chases Black Rook.

Threatening (to checkmate) repetitively with no hope of realizing the threat.

- \triangleright R2=1,C9=8,R1=2,C8=9,...
- ▷ Black Cannon at the 9th column threatens to checkmate.

Sometimes it is difficult to check whether a piece is *truly* or falsely protected: the definition of a protector is complicated.

- \triangleright R8+2,G6+5,R8-3,G5-6,...
- ▶ Red Knight at the 2nd column is not protected.
- ▶ Black Rook at the 6th column cannot threaten.

Sometimes it is difficult to check whether a piece is *truly* or falsely protected: you can block a protector.

- \triangleright P7=6,M1+3,P6=7,M3-1,...
- ▶ The protector of Black Knight at the 7th column is blocked.

Chinese Chess Special Rules (2/3)

Two main categories:

- Asian version (2003)
 - ▷ Supported by Asian Chinese Chess Association.
 - ▷ Simple and effective.
 - ▶ Is not really "fair" in certain complex cases.
 - ▶ Taiwan version (2007) is based on Asian version.
- Mainland version (1999)
 - ▷ Supported by the PRC Chinese Chess Association.
 - ▷ A national standard.
 - ▷ Developing still in progress: latest version dated 1999.
 - ▶ Try to be as complete and "fair" as possible.

Problems in computer implementation:

- "Rules" are vague.
- Often illustrated with examples.

Rules: Taiwan Version

41 pages (2007).

Rules: Asian Version

96 pages (2003).

TCG: Computer Chinese Chess, 20100112, Tsan-sheng Hsu

Rules: Mainland Version

329 pages (1999).

Rules: Problems About the Mainland Version

317 pages (2000).

Chinese Chess Special Rules (3/3)

Current treatment of special rules:

- Avoid them at all: do not play repeated positions.
 - ▷ May lose advantage.
 - ▶ Must allow loops in endgame construction.
- Special cases:
 - ▷ Only one side has attacking pieces: all are implemented.
 - ▶ One side has only a pawn and some defending pieces: can be affected by special rules.
- Partial treatment:
 - ▶ Implement only the rules related to "checking."
 - ▶ Implement some "chasing" rules.
 - ▷ Verify whether special rules can affect an endgame.

We need a throughout understanding of special rules to build larger endgame databases.

Special Rules: Results

Partial treatment may build imperfect databases.

- [Fang, Hsu & Hsu 2000].
- Jih-tung Pai [Private communication 2003] implemented a variation of [Fang, Hsu & Hsu 2002].
- Look for necessary conditions when databases can be stained by special rules.
 - Selected 50+ databases are verified [Fang 2004].

Special Rules: Work in Progress

May affect the correctness of evaluation functions.

• Xie Xie vs. Contemplation in the first WCCCC (Year 2004).

 \triangleright Less than 3 % of the games played.

- About 5% of the games played in the 10th Computer Olympiad (October 2005) need to utilize special rules.
- Usage of logic and graph theory in an algorithmic context to describe the Asian version.
 - To explain all examples.
 - To abstract hidden experts' knowledge.
 - To obtain fast computer implementations.
- Still a long way to go for the Mainland version.

Xie Xie vs. Contemplation at WCCCC 2004

Red: Contemplation. N3+4,R7-6,N4-3,R6-7,...

- ▶ Red Knight at 3rd column is protected.
- ▶ The game ended in a draw.

Usage of Endgame Knowledge

Databases of endgames are too large to be loaded into the main memory due searching.

• Human experts:

- Studies the degree of "advantageous" by considering only positions of pawns and material combinations.
- Lots of endgame books exist.
- How to verify whether these knowledge are consistent?
 - Piece additive law: If endgame W is advantageous to the Red, then
 - \triangleright adding a red piece to W will never make it worse.
 - \triangleright deleting a red piece to W will never make it better.
- Inferencing the degree of "advantageous" of an unknown endgame W by values of endgames that we have already known.
 - [Chen et. al. 2008].
- Checking whether a set of endgame knowledge is consistent according to the piece additive law.
 - [Chen et. al. 2009].

Concluding Remarks

- Many open problems.
- Research opportunities:
 - Algorithm and complexity.
 - Algorithmic engineering.
 - External memory algorithms.
 - System implementation.
 - Parallel computing.
 - A.I.
 - ▶ Knowledge extracting.
 - ▷ Data mining.
 - ▷ ...
 - Discrete Math., e.g., Graph theory.
- Commercial opportunities.
- Fun.

References and further readings

- * P.-s. Wu, P.-Y. Liu, and T.-s Hsu. An external-memory retrograde analysis algorithm. In H. Jaap van den Herik, Y. Björnsson, and N. S. Netanyahu, editors, *Lecture Notes in Computer Science 3846: Proceedings of the 4th International Conference on Computers and Games*, pages 145– 160. Springer-Verlag, New York, NY, 2006.
- K. Thompson. Retrograde analysis of certain endgames. ICCA Journal, 9(3):131–139, 1986.
- K. Thompson. 6-piece endgames. ICCA Journal, 19(4):215– 226, 1996.
- T.-s. Hsu and P.-Y. Liu. Verification of endgame databases. International Computer Game Association (ICGA) Journal, 25(3):132–144, 2002.
- S.-J. Yen, J.-C. Chen, T.-N. Yang, and S.-C. Hsu. Computer Chinese chess. International Computer Game Association (ICGA) Journal, 27(1):3–18, 2004.
- B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Knowledge inferencing on chinese chess endgames. In H. Jaap van den

Herik, X. Xu, Z. Ma, and M. H.M. Winands, editors, Lecture Notes in Computer Science 5131: Proceedings of the 6th International Conference on Computers and Games, pages 180–191. Springer-Verlag, New York, NY, 2008.

B.-N. Chen, P.F. Liu, S.C. Hsu, and T.-s. Hsu. Conflict resolution of chinese chess endgame knowledge base. In Lecture Notes in Computer Science : Proceedings of the 12th Advances in Computer Games Conference. Springer-Verlag, New York, NY, 2009, to appear.